

Name :
Student Number :

Demonstrator :

Date :

In
tr

od
uc

tio
n

to
 M

AT
LA

B

20
14

D
ep

ar
tm

en
t o

f P
hy

si
cs

GLOBAL AIMS

• Familiarisation with basic MATLAB structure and
syntax

• Use MATLAB to analyse experimental data and
perform an error analysis

• Basic plotting features

BACKGROUND

Assumed knowledge
• First year physics
• First year mathematics

Copyright © 2008 Pearson Education, Inc.

La Trobe University MATLAB Introduction for Physics Students

2 MATLAB Intro

What is MATLAB?

MATLAB is a specialised computer software package for numerical

calculations with matrices (MATrix LABoratory). It is a powerful

tool for data analysis and visualisation, with many advantages

over Excel.

No, really. What is it?

Let’s find out! Log on to your computer and open MATLAB. The

screen will look something like this:

The panel in the centre is the command window – this is where

you can give instructions to MATLAB. The top right panel is the

workspace – this tells you the names and properties of all the

variables currently stored in the computer’s memory. Each time

you create a new matrix it will appear in the workspace. Below the

workspace is the command history panel, which tells you

everything you’ve already typed into the command window. The

panel on the left shows the working directory where MATLAB will

look for files.

CONTEXT

In second and third year labs

students are encouraged to

use MATLAB for

manipulating and presenting

data in their lab reports.

MATLAB is a powerful tool

for data analysis and

visualisation, with many

advantages over Excel. The

purpose of this introductory

session is to introduce you to

the key features of MATLAB

that will be useful during

laboratory classes.

MATLAB presents a bit of a

learning curve, especially if

you don’t have much

computing experience.

Remember that we are here

to help you so just ask if you

get stuck.

During the semester you may

develop some MATLAB files

that will be useful to you in

other labs; save your code on

a USB and bring it with you

to your next lab!

These notes were developed by:

Emma Bland
Department of Physics
La Trobe University
e.bland@latrobe.edu.au

La Trobe University MATLAB Introduction for Physics Students

3 MATLAB Intro

PART 1: Getting Started

Let’s begin by getting a feel for some of the basic features of MATLAB. Type the following into the

command window and press ENTER:

>> a=5; b=10; a+b

This creates scalars a=5 and b=10 and then adds them together. Notice that a and b have

appeared in the workspace (top right panel). The answer to a+b is stored as the variable ans.

Now try some more operations:

>> a=1:10

>> a'

>> sum(a)

Notice that the first command creates a row vector (1d matrix) of integers from 1-10 inclusive.

Make a note of what effect the other two commands have on the matrix a.

The following code creates a 1d matrix of values from 1-10 separated by 0.5:

>> a=1:0.5:10

Alternatively, you can specify the number of elements in the matrix, rather than the element

spacing:

>> a=linspace(1,10,19)

This creates a matrix with 19 entries equally spaced between 1 and 10.

You can also create multi-dimensional matrices using commands such as:

>> a=ones(3,4)

>> b=zeros(2,5)

>> I=eye(5)

Again, make a note of what each of these commands does.

MATLAB Tip: put a semicolon (;) at the end of a statement suppress the output. This is particularly

useful for large matrices as it won’t fill up the command window with large outputs.

MATLAB Tip: clear the command window by typing clc.

La Trobe University MATLAB Introduction for Physics Students

4 MATLAB Intro

More fun with matrices:

Enter the following matrices into MATLAB:

>> A=[0 2 4;5 2 0;1 1 1]

>> B=5*ones(3,3)

>> C=[1; 2; 1]

Matrix addition/subtraction (matrix dimensions must agree):

>> A+B

>> A-B

Matrix multiplication (notice that the matrix product is not commutative):

>> A*B

>> B*A

>> A*C

>> C*A

(The last expression will return an error because the inner matrix dimensions do not agree.)

Element-wise multiplication, which multiplies corresponding elements in each matrix (𝐴𝑖𝑖 × 𝐵𝑖𝑖).

Notice that element-wise multiplication is commutative:

>> A.*B

>> B.*A

Matrix inverse (only for square matrices):

>> inv(A)

>> inv(C)

Perhaps we want to extract the second column of the matrix A:

>> A(:,2)

Or extract the third row of matrix A:

>> A(3,:)

MATLAB Tip: use the ↑ arrow to display the last command you entered into the command

window.

La Trobe University MATLAB Introduction for Physics Students

5 MATLAB Intro

sin𝜃 ≈ 𝜃; cos𝜃 ≈ 1 −
𝜃2

2
; tan 𝜃 ≈ 𝜃

PART 2: Small Angle Approximation

The small angle approximation is used to approximate the trigonometric functions sin𝜃, cos𝜃

and tan𝜃

where 𝜃 is measured in radians.

In this exercise you will investigate the validity of the approximation, sin𝜃 ≈ 𝜃.

Rather than typing files line-by-line into the command window, we are going to create a script

(called an m-file in MATLAB). This allows you to execute multiple commands at once, and saves

you from typing the same things again and again! Open a new script file in MATLAB (the button

just under the File menu) and save it in the [username]/Documents/MATLAB folder. Type the

following code into the script:

% SMALL ANGLE APPROXIMATION
% Plot the functions y=sin(x) and y=x from x=0 to x=pi/2

x=0:0.05:pi/2;

%PLOT YOUR FUNCTIONS
hold on %lets you plot multiple of functions on the

same set of axes
p1=plot(x,x,'.-b'); %plot y=x
p2=plot(x,sin(x),'-ro'); %plot y=sin(x)

Run the script by clicking ‘save and run’.

Let’s go through the script line-by-line to see what just happened. The first two lines are

comments; these are for you to annotate your code to remind you what it does. Any text that

appears after a % is ignored by MATLAB. The next line creates a 1-d matrix of 𝒙-values, ranging

from 𝑥 = 0 to 𝑥 = 𝜋 2⁄ in increments of 0.05. Type this line into the MATLAB command window if

you’re not sure what’s going on. Finally, we get to the interesting part where the plotting

happens. The command hold on is used to display multiple plots on the same figure (the

command hold off will erase the previous figure before the next is plotted). Not

surprisingly, the function plot(x,y) creates a plot of 𝒙 versus 𝒚. The first plot (called p1) plots

the straight line 𝑦 = 𝑥 (𝑥 versus 𝑥), and the second plot (called p2) plots 𝑥 versus sin(𝑥). The

extra arguments ‘.-b’ and ‘-ro’ are used to specify the colours and style of the lines so we can tell

them apart. Type help plot into the MATLAB command window to see what each of these

options means.

La Trobe University MATLAB Introduction for Physics Students

6 MATLAB Intro

MATLAB Tip: type help [function] into the command window for more information about

a function or command.

Of course the figure produced by the above script is rather limited; the plot needs a title, the axes

aren’t labelled, and it would be nice to have a legend so we know which function is which. Let’s do

that now. Add the following code to the end of your script, choosing an appropriate title and axis

labels for your plot:

%Title and axis labels
title('[plot title]');
xlabel('[x axis title]');
ylabel('[y axis title]');

%create a legend
legend([p1,p2],'y=x','y=sin(x)');

Modify your script to calculate the error in the small angle approximation over the domain

[0,𝜋/2]. That is, the difference between 𝑥 and sin(𝑥). Plot the error as a function of 𝑥 and

modify the legend as appropriate. For which values of 𝑥 do you think the small angle

approximation is valid?

__

__

One more thing: the axis labels and titles will probably be very small. Assist your demonstrator’s

tired eyes by enlarging the text so that it is easier to read:

>> set(gca,'FontSize',16)

gca stands for ‘get current axes’. That is, the above command will be applied to the current

figure window.

PART 3: Measuring absolute zero

Consider the following experiment: a container of gas is brought into contact with a liquid and

they are allowed to come to the same temperature. The temperature and gas pressure are then

recorded. This is repeated for several liquids at different temperatures:

La Trobe University MATLAB Introduction for Physics Students

7 MATLAB Intro

𝑃𝑃 = 𝑛𝑛𝑛

𝑃𝑃 = 𝑛𝑛(𝑛𝑐 + 𝑎)

𝑃 = 𝑚(𝑛𝑐 + 𝑎) = mTc + 𝑏

𝑛𝑐,0 = −𝑏 𝑚�

Liquid Temperature (°C) Pressure of gas (kPa)

Liquid nitrogen -196.0 21.1

Ethanol with dry ice (solid CO2) -73.5 55.7

Iced water 2.5 74.9

Tap water 21.5 82.5

Boiling water 99.0 100.7

Hot cooking oil 229.5 139.2

We are going to use the results above to estimate absolute zero. For an ideal gas, the pressure P,

volume V and temperature T (in Kelvin) are related by:

where 𝑛 is the number of moles of the gas and R=8.31 J mol-1K-1 is the gas constant. Since we are

working in degrees Celsius, the above equation can be rewritten as:

where a is the conversion factor between degrees Celsius and degrees Kelvin, and Tc indicates that

the temperature is in degrees Celsius. In the above experiment, the volume and amount of gas

remain constant, so we have a linear relationship between temperature and pressure:

where we have substituted 𝑚 = 𝑛𝑛 𝑃⁄ and 𝑏 = 𝑚𝑎. If we set the pressure equal to zero, we

obtain the value for absolute zero in degrees Celsius:

Although we could just type the pressure and temperature values directly into MATLAB, let’s have

a go at importing them from Excel. The measurements are saved in the file

absolutezero.xlsx. Download this file from the LMS and save it in the

C:\Users\[username]\Documents\MATLAB folder. You should now be able to see this file on the

left panel in MATLAB; right click on it and select Import Data. A dialogue box will appear showing

the cells containing the data. Check that the correct cells are selected (just the temperature and

pressure values, not the row/column names) and click the import button. MATLAB should display

La Trobe University MATLAB Introduction for Physics Students

8 MATLAB Intro

a message to tell you that the data have been imported. Close the dialogue box.

The data have been imported into a matrix called untitled; it should appear in the workspace.

Rename this matrix as data by right clicking it in the workspace and choosing rename. To view

the contents of the matrix, type the name of the matrix into command window:

>> data

Now that you have imported the data the long, tedious way, let’s import the data directly from

the command line in a single step. There is a special function to import data from Excel:

>> data=xlsread('absolutezero.xlsx')

(Refer to the Quick Reference Guide at the end of this document for instructions on importing

data from text/ASCII files into MATLAB).

You should see two columns containing your data. Extract the first column into a matrix called

temperature:

>> temperature=data(:,1)

Repeat the above process to extract the second column into a matrix called pressure.

Let’s plot pressure as a function of temperature. Rather than using the plot() command, we

can plot the data with error bars in a single step using the errorbar(X,Y,Err) command:

>> errorbar(pressure,temperature,0.5*ones(6,1),'.')

0.5*ones(6,1) is a 6 x 1 matrix containing the error values (in this case, ±0.5 °C) associated

with each temperature measurement. If you’re not sure what this syntax means, type it into the

command window. For more information about error bars, type:

>> help errorbar

Now we are going to fit a line (polynomial of order 1) to these points:

>> [p,s]=polyfit(pressure,temperature,1) %polynomial of order 1

The first value of the matrix p is the gradient and the second is the y-intercept. You can access

these in MATLAB by calling p(1) and p(2) respectively. We will use s to evaluate R2 for the

linear fit (see below).

La Trobe University MATLAB Introduction for Physics Students

9 MATLAB Intro

To plot the line of best fit and display the equation on the plot:

>> x=0:200; %matrix of x-values for plotting
>> yfit=p(1)*x+p(2); %evaluate the line of best fit at each

value of x
>> hold on %overlay multiple plots on one figure
>> plot(x,yfit)

%display equation on plot (choose appropriate coordinates [xpos,ypos])

>> text(xpos,ypos,['y=' num2str(p(1)) 'x+' num2str(p(2))])

We should also calculate the coefficient of determination (R2 value) for the linear fit. In MATLAB

this requires a little bit of work:

>> Rsq=1-(s.normr^2)/(norm(y-mean(y))^2)

>> text(4,4.5,['R^2=' num2str(Rsq)])

(For this example, replace y with temperature, since these are the y-values)

Using the code from the previous section, create labels for your axes (with units) and an

appropriate title for the plot. Adjust the range of the axes using:

>> axis([xmin xmax ymin ymax])

Make sure that you choose the ranges of the axes such that all the data points on the graph and

the y-intercept are clearly visible.

What is the value of the temperature (in °C) when the pressure is equal to zero? Is this what you

expected?

__

__

__

__

La Trobe University MATLAB Introduction for Physics Students

10 MATLAB Intro

𝐹 = −𝑘𝑥

PART 4: Measuring a Spring Constant

Recall Hooke’s law: the force F required to extend/compress a spring by a distance x is given by:

where k is a constant of proportionality (the ‘spring constant’) which depends on the material

and construction of the spring.

In an experiment to measure the spring constant of a particular spring, a group of students

attach different masses to the end of the spring, which hangs vertically, and record the length of

the spring each time:

Mass (g) Spring Length (cm) Error in Spring Length (cm)
50 18.5 0.5
100 20.2 0.5
150 21.7 0.5
200 23.1 0.5
250 24.5 0.5
300 26.2 0.5

Since the mass is not moving when the spring length is measured, the restoring force provided

by the spring is equal and opposite to the weight force due to gravity.

Download the file springconstant.xlsx from the LMS and save it in

C:\Users\[username]\Documents\MATLAB).

Use the template below to create a MATLAB script that does the following:

1. Import the data into MATLAB from the Excel file springconstant.xlsx

2. Create 1d matrices of values for the force on the spring, the length of spring, and the

error in spring length (all in SI units)

3. Plot force (x) versus spring length (y) with y-error bars

4. Fit a line to the data and display it on the figure

5. Calculate the R2 value for the fit and display it on the figure

6. Determine the spring constant from the gradient of the line

La Trobe University MATLAB Introduction for Physics Students

11 MATLAB Intro

𝑛 = 2𝜋�
𝑚
𝑘

%[Brief description of what the code does]
%[your name here]

% Import data into MATLAB

% Make column matrices of
% (1) Force exerted by spring (in Newtons)
% (2) Length of spring (in metres)
% (3) Error in length of spring (in metres)

%Plot force (x) versus spring extension (y) with error bars
figure;
hold on
errorbar(, , ,'.')

%Fit a line to the data and plot it on the graph (with equation)

%Calculate R^2 value and display on plot

%Calculate the spring constant
k=

What is the value of the spring constant k?

What is the length of the spring with zero mass attached?

Finally, we are going to write a function that calculates the period of oscillation of the spring

given the attached mass and the spring constant:

function [T]=spring_T(m,k)
%Calculates the period of oscillation of a spring with spring
%constant k and mass m attached

[equation goes here]

end

Complete the above function by adding the appropriate equation. Note that √⬚ in MATLAB is

sqrt() and π is pi. Save the script as spring_T.m.

What is the period of oscillation of the spring with a 200g mass attached?

La Trobe University MATLAB Introduction for Physics Students

12 MATLAB Intro

𝑓(𝑥) = 𝑓(𝑎) +
𝑓′(𝑎)

1!
(𝑥 − 𝑎) +

𝑓′′(𝑎)
2!

(𝑥 − 𝑎)2 +
𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯

PART 5: Taylor polynomials

Taylor polynomials are often used in physics to approximate equations. Recall that the Taylor

expansion of the function 𝑓(𝑥) about the point 𝑥 = 𝑎 is given by

Calculate by hand the first six terms of the Taylor series expansion of the function, 𝑓(𝑥) = sin(𝑥)

near 𝑥 = 0 (some of these terms will be zero).

MATLAB has an inbuilt function for calculating Taylor polynomials. Check your working using the

following code:

>> syms x
>> f=inline('sin(x)')
>> taylor(f(x),x,0,'Order',6)

Note that MATLAB calculates the Taylor expansion to order n-1. That is, the code above gives the

5th order approximation (which has 6 terms).

The above code takes advantage of MATLAB’s symbolic mathematics capabilities. It treats x as a

symbol/pronumeral rather than a matrix with a fixed value. This allows it to perform algebraic

manipulations on a mathematical expression (like you do by hand).

La Trobe University MATLAB Introduction for Physics Students

13 MATLAB Intro

Now write a script to plot the Taylor series expansion of 𝑓(𝑥) = sin(𝑥) for n=1,3,5,9 on a single

pair of axes. To plot the symbolic function f(x)=sin(x) we will use the MATLAB function ezplot()

rather than plot(). Also plot 𝑦 = sin(𝑥) so you can compare it to your Taylor approximations.

Here’s some code to get you started:

% TAYLOR EXPANSIONS OF THE FUNCTION Y=SIN(X) ABOUT THE POINT X=0

%DEFINE FUNCTION
syms x
f=inline('sin(x)');

%TAYLOR POLYNOMIALS
taylor1=taylor(f(x),x,0,'Order',2); %n=1
taylor3=taylor(f(x),x,0,'Order',4); %n=3

%GENERATE PLOTS
hold on

a=-pi:0.05:pi; % define matrix a
plot(a,sin(a),'black','LineWidth',5); % plot the function sin(a)

p1=ezplot(taylor1,[-pi,pi]); % n=1
p3=ezplot(taylor3,[-pi,pi]); % n=3

%SET LINE COLORS FOR EACH PLOT
set(p1,'Color', 'green');
set(p3,'Color', 'red');

%CREATE A LEGEND
legend([p1,p3],'n=1','n=3','Location','EastOutside')

%AXIS LABELS AND PLOT TITLE

Describe what happens as n increases:

__

__

__

__

La Trobe University MATLAB Introduction for Physics Students

14 MATLAB Intro

Finished?
Submit your m-file for the spring constant exercise via the submission page on the LMS.

Save the m-files you created onto a USB (or email them to yourself) and bring them to the lab!

Quick reference guide

Setting the file path

The file path tells MATLAB where to look for m-files you have created. To set to the path go to
File>Set Path. Click Add Folder (or Add with Subfolders), navigate to the appropriate directory,
click ok and then press Save. The files in the current MATLAB search path will be displayed in the
panel on the left of the screen.

Importing text files into MATLAB

If the file containing your data is in the working directory, right-click the file in the left panel and
select Import Data. If the file is saved elsewhere, go to File > Import Data where you can browse
for the file. This will launch the Import Wizard:

On the left side of the Import Wizard is a display of the data file you are importing. Make sure
that the number of header lines (e.g. column titles) in the box in the top-right corner is correct.
You will also need to specify how the columns are separated (tabs, spaces, commas etc.).

If you would prefer to import your data directly from the command line or script file:
>> data=importdata('[filename]');

This will import the data into a matrix called data. Make sure that you check the data have been
imported correctly. If the file is not located in the MATLAB file path, you will need to include the
full path to the file (e.g. C:\Users\[username]\Documents\experiment_data\mydata.txt).

La Trobe University MATLAB Introduction for Physics Students

15 MATLAB Intro

Importing data from Excel

You can use the Import Wizard for Excel files (it looks slightly different). Alternatively, there is a
special MATLAB function for importing data from Excel from the command line:
>> data=xlsread('[filename]')

Again, if the file is not located in the MATLAB file path, you will need to include the full path to the
file.

Plotting

figure %create a new figure window
figure(1) %go to figure 1 (for switching between figures)
clf %clear the figure window
hold on %holds the current plot and all axis properties so

that subsequent graphing commands add to the
existing graph

hold off %returns to the default mode whereby PLOT commands

erase the previous plots

p1=plot(x,y); %plot x vs y, store in p1

p1=errorbar(X,Y,E); %plot X vs Y with error bars ±E, and store in

p1. E must have the same length as X and Y.

title('[plot title]'); %plot title
xlabel('[x axis title]'); %x-axis label
ylabel('[y axis title]'); %y-axis label

legend([p1,p2,…],'label 1','label 2',…); %create a legend

axis([xmin xmax ymin ymax]) %adjust axis range

Remember you can type help [function] into the command window for more information
about a function/command.

Linear regression

% Fit a polynomial of order 1 (a line) to the points defined by
matrices x and y
>> [p,s]=polyfit(x,y,1)

% Compute the value of the fitted line for each element in the matrix
x. p(1) is the gradient, p(2) is the y-intercept
>> yfit=p(1)*x+p(2);

% Display equation of line on plot at [xpos,ypos]
>> text(xpos,ypos,['y=' num2str(p(1)) 'x+' num2str(p(2))])

% Calculate R2 value and display on plot
>> Rsq=1-(s.normr^2)/(norm(y-mean(y))^2)

>> text(xpos,ypos,['R^2=' num2str(Rsq)])

